Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 12(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36986280

RESUMO

Many aphid-borne viruses are important pathogens that affect wheat crops worldwide. An aphid-transmitted closterovirus named wheat yellow leaf virus (WYLV) was found to have infected wheat plants in Japan in the 1970s; however, since then, its viral genome sequence and occurrence in the field have not been investigated. We observed yellowing leaves in the 2018/2019 winter wheat-growing season in an experimental field in Japan where WYLV was detected five decades ago. A virome analysis of those yellow leaf samples lead to the discovery of a closterovirus together with a luteovirus (barley yellow dwarf virus PAV variant IIIa). The complete genomic sequence of this closterovirus, named wheat closterovirus 1 isolate WL19a (WhCV1-WL19a), consisted of 15,452 nucleotides harboring nine open reading frames. Additionally, we identified another WhCV1 isolate, WL20, in a wheat sample from the winter wheat-growing season of 2019/2020. A transmission test indicated that WhCV1-WL20 was able to form typical filamentous particles and transmissible by oat bird-cherry aphid (Rhopalosiphum pad). Sequence and phylogenetic analyses showed that WhCV1 was distantly related to members of the genus Closterovirus (family Closteroviridae), suggesting that the virus represents a novel species in the genus. Furthermore, the characterization of WhCV1-WL19a-derived small RNAs using high-throughput sequencing revealed highly abundant 22-nt-class small RNAs potentially derived from the 3'-terminal end of the WhCV1 negative-strand genomic RNA, indicating that this terminal end of the WhCV1 genome is likely particularly targeted for the synthesis of viral small RNAs in wheat plants. Our results provide further knowledge on closterovirus diversity and pathogenicity and suggest that the impact of WhCV1 on wheat production warrants further investigations.

2.
Front Microbiol ; 12: 715545, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489904

RESUMO

Yellow mosaic disease in winter wheat is usually attributed to the infection by bymoviruses or furoviruses; however, there is still limited information on whether other viral agents are also associated with this disease. To investigate the wheat viromes associated with yellow mosaic disease, we carried out de novo RNA sequencing (RNA-seq) analyses of symptomatic and asymptomatic wheat-leaf samples obtained from a field in Hokkaido, Japan, in 2018 and 2019. The analyses revealed the infection by a novel betaflexivirus, which tentatively named wheat virus Q (WVQ), together with wheat yellow mosaic virus (WYMV, a bymovirus) and northern cereal mosaic virus (a cytorhabdovirus). Basic local alignment search tool (BLAST) analyses showed that the WVQ strains (of which there are at least three) were related to the members of the genus Foveavirus in the subfamily Quinvirinae (family Betaflexiviridae). In the phylogenetic tree, they form a clade distant from that of the foveaviruses, suggesting that WVQ is a member of a novel genus in the Quinvirinae. Laboratory tests confirmed that WVQ, like WYMV, is potentially transmitted through the soil to wheat plants. WVQ was also found to infect rye plants grown in the same field. Moreover, WVQ-derived small interfering RNAs accumulated in the infected wheat plants, indicating that WVQ infection induces antiviral RNA silencing responses. Given its common coexistence with WYMV, the impact of WVQ infection on yellow mosaic disease in the field warrants detailed investigation.

3.
Biology (Basel) ; 10(2)2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33572564

RESUMO

Previously, we have reported the ability of a symptomless hypovirus Cryphonectria hypovirus 4 (CHV4) of the chestnut blight fungus to facilitate stable infection by a co-infecting mycoreovirus 2 (MyRV2)-likely through the inhibitory effect of CHV4 on RNA silencing (Aulia et al., Virology, 2019). In this study, the N-terminal portion of the CHV4 polyprotein, termed p24, is identified as an autocatalytic protease capable of suppressing host antiviral RNA silencing. Using a bacterial expression system, CHV4 p24 is shown to cleave autocatalytically at the di-glycine peptide (Gly214-Gly215) of the polyprotein through its protease activity. Transgenic expression of CHV4 p24 in Cryphonectria parasitica suppresses the induction of one of the key genes of the antiviral RNA silencing, dicer-like 2, and stabilizes the infection of RNA silencing-susceptible virus MyRV2. This study shows functional similarity between CHV4 p24 and its homolog p29, encoded by the symptomatic prototype hypovirus CHV1.

4.
Front Microbiol ; 11: 1064, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670213

RESUMO

Partitiviruses (dsRNA viruses, family Partitiviridae) are ubiquitously detected in plants and fungi. Although previous surveys suggested their omnipresence in the white root rot fungus, Rosellinia necatrix, only a few of them have been molecularly and biologically characterized thus far. We report the characterization of a total of 20 partitiviruses from 16 R. necatrix strains belonging to 15 new species, for which "Rosellinia necatrix partitivirus 11-Rosellinia necatrix partitivirus 25" were proposed, and 5 previously reported species. The newly identified partitiviruses have been taxonomically placed in two genera, Alphapartitivirus, and Betapartitivirus. Some partitiviruses were transfected into reference strains of the natural host, R. necatrix, and an experimental host, Cryphonectria parasitica, using purified virions. A comparative analysis of resultant transfectants revealed interesting differences and similarities between the RNA accumulation and symptom induction patterns of R. necatrix and C. parasitica. Other interesting findings include the identification of a probable reassortment event and a quintuple partitivirus infection of a single fungal strain. These combined results provide a foundation for further studies aimed at elucidating mechanisms that underly the differences observed.

5.
Adv Virus Res ; 107: 37-86, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32711734

RESUMO

Plant viruses are important pathogens that cause serious crop losses worldwide. They are obligate intracellular parasites that commandeer a wide array of proteins, as well as metabolic resources, from infected host cells. In the past two decades, our knowledge of plant-virus interactions at the molecular level has exploded, which provides insights into how plant-infecting viruses co-opt host cellular machineries to accomplish their infection. Here, we review recent advances in our understanding of how plant viruses divert cellular components from their original roles to proviral functions. One emerging theme is that plant viruses have versatile strategies that integrate a host factor that is normally engaged in plant defense against invading pathogens into a viral protein complex that facilitates viral infection. We also highlight viral manipulation of cellular key regulatory systems for successful virus infection: posttranslational protein modifications for fine control of viral and cellular protein dynamics; glycolysis and fermentation pathways to usurp host resources, and ion homeostasis to create a cellular environment that is beneficial for viral genome replication. A deeper understanding of viral-infection strategies will pave the way for the development of novel antiviral strategies.


Assuntos
Vírus de DNA , Interações Hospedeiro-Patógeno , Vírus de Plantas , Proteínas Virais , Antivirais , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/virologia , Vírus de Plantas/genética , Plantas/virologia , Provírus , Proteínas Virais/genética , Replicação Viral
6.
Front Microbiol ; 11: 509, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32318034

RESUMO

Aphids (order Hemiptera) are important insect pests of crops and are also vectors of many plant viruses. However, little is known about aphid-infecting viruses, particularly their diversity and relationship to plant viruses. To investigate the aphid viromes, we performed deep sequencing analyses of the aphid transcriptomes from infested barley plants in a field in Japan. We discovered virus-like sequences related to nege/kita-, flavi-, tombus-, phenui-, mononega-, narna-, chryso-, partiti-, and luteoviruses. Using RT-PCR and sequence analyses, we determined almost complete sequences of seven nege/kitavirus-like virus genomes; one of which was a variant of the Wuhan house centipede virus (WHCV-1). The other six seem to belong to four novel viruses distantly related to Wuhan insect virus 9 (WhIV-9) or Hubei nege-like virus 4 (HVLV-4). We designated the four viruses as barley aphid RNA virus 1 to 4 (BARV-1 to -4). Moreover, some nege/kitavirus-like sequences were found by searches on the transcriptome shotgun assembly (TSA) libraries of arthropods and plants. Phylogenetic analyses showed that BARV-1 forms a clade with WHCV-1 and HVLV-4, whereas BARV-2 to -4 clustered with WhIV-9 and an aphid virus, Aphis glycines virus 3. Both virus groups (tentatively designated as Centivirus and Aphiglyvirus, respectively), together with arthropod virus-like TSAs, fill the phylogenetic gaps between the negeviruses and kitaviruses lineages. We also characterized the flavi/jingmen-like and tombus-like virus sequences as well as other RNA viruses, including six putative novel viruses, designated as barley aphid RNA viruses 5 to 10. Interestingly, we also discovered that some aphid-associated viruses, including nege/kita-like viruses, were present in different aphid species, raising a speculation that these viruses might be distributed across different aphid species with plants being the reservoirs. This study provides novel information on the diversity and spread of nege/kitavirus-related viruses and other RNA viruses that are associated with aphids.

7.
Virology ; 533: 125-136, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31153047

RESUMO

There is still limited information on the diversity of (-)ssRNA viruses that infect fungi. Here, we have discovered two novel (-)ssRNA mycoviruses in the shiitake mushroom (Lentinula edodes). The first virus has a monopartite RNA genome and relates to that of mymonaviruses (Mononegavirales), especially to Hubei rhabdo-like virus 4 from arthropods and thus designated as Lentinula edodes negative-strand RNA virus 1. The second virus has a putative bipartite RNA genome and is related to the recently discovered bipartite or tripartite phenui-like viruses (Bunyavirales) associated with plants and ticks, and designated as Lentinula edodes negative-strand RNA virus 2 (LeNSRV2). LeNSRV2 is likely the first segmented (-)ssRNA virus known to infect fungi. Its smaller RNA segment encodes a putative nucleocapsid and a plant MP-like protein using a potential ambisense coding strategy. These findings enhance our understanding of the diversity, evolution and spread of (-)ssRNA viruses in fungi.


Assuntos
Micovírus/isolamento & purificação , Vírus de RNA/isolamento & purificação , Cogumelos Shiitake/virologia , Sequência de Bases , Micovírus/genética , Filogenia , Vírus de RNA/classificação , Vírus de RNA/genética , RNA Viral/genética
8.
New Phytol ; 221(2): 935-945, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30169907

RESUMO

Receptor for activated C kinase 1 (RACK1) is strictly conserved across eukaryotes and acts as a versatile scaffold protein involved in various signaling pathways. Plant RACK1 is known to exert important functions in innate immunity against fungal and bacterial pathogens. However, the role of the RACK1 in plant-virus interactions remains unknown. Here, we addressed the role of RACK1 of Nicotiana benthamiana during infection by red clover necrotic mosaic virus (RCNMV), a plant positive-stranded RNA virus. NbRACK1 was shown to be recruited by the p27 viral replication protein into endoplasmic reticulum-derived aggregated structures (possible replication sites). Downregulation of NbRACK1 by virus-induced gene silencing inhibited viral cap-independent translation and p27-mediated reactive oxygen species (ROS) accumulation, which are prerequisite for RCNMV replication. We also found that NbRACK1 interacted with a host calcium-dependent protein kinase (NbCDPKiso2) that activated a ROS-generating enzyme. Interestingly, NbRACK1 was required for the interaction of p27 with NbCDPKiso2, suggesting that NbRACK1 acts as a bridge between the p27 viral replication protein and NbCDPKiso2. Collectively, our findings provide an example of a viral strategy in which a host multifaceted scaffold protein RACK1 is highjacked for promoting viral protein-triggered ROS production necessary for robust viral replication.


Assuntos
Nicotiana/genética , Doenças das Plantas/virologia , Espécies Reativas de Oxigênio/metabolismo , Receptores de Quinase C Ativada/metabolismo , Tombusviridae/fisiologia , Proteínas Virais/metabolismo , Doenças das Plantas/imunologia , Imunidade Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Receptores de Quinase C Ativada/genética , Nicotiana/virologia , Tombusviridae/genética , Proteínas Virais/genética , Replicação Viral
9.
Plant Physiol ; 178(2): 596-611, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30131421

RESUMO

Specific degradation of photodamaged D1, the photosystem II (PSII) reaction center protein, is a crucial step in the PSII repair cycle to maintain photosynthesis activity. Processive proteolysis by the FtsH protease is fundamental to cooperative D1 degradation. Here, we attempted to purify the FtsH complex to elucidate its regulation mechanisms and substrate recognition in Arabidopsis (Arabidopsis thaliana). Unlike previously reported prokaryotic and mitochondrial FtsHs, the Arabidopsis chloroplastic FtsH does not appear to form a megacomplex with prohibition-like proteins but instead accumulates as smaller complexes. The copurified fraction was enriched with a partial PSII intermediate presumably undergoing repair, although its precise properties were not fully clarified. In addition, we copurified a bacteria-type GTPase localized in chloroplasts, EngA, and confirmed its interaction with FtsH by subsequent pull-down and bimolecular fluorescence complementation assays. While the engA mutation is embryo lethal, the transgenic lines overexpressing EngA (EngA-OX) showed leaf variegation reminiscent of the variegated mutant lacking FtsH2. EngA-OX was revealed to accumulate more cleaved D1 fragments and reactive oxygen species than the wild type, indicative of compromised PSII repair. Based on these results and the fact that FtsH becomes more stable in EngA-OX, we propose that EngA negatively regulates FtsH stability. We demonstrate that proper FtsH turnover is crucial for PSII repair in the chloroplasts of Arabidopsis. Consistent with the increased turnover of FtsH under high-light conditions in Chlamydomonas reinhardtii, our findings underline the rapid turnover of not only D1 but also FtsH proteases in the PSII repair cycle.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas de Ligação ao GTP/metabolismo , Metaloendopeptidases/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Cloroplastos/enzimologia , Proteínas de Ligação ao GTP/genética , Luz , Metaloendopeptidases/genética , Fotossíntese , Complexo de Proteína do Fotossistema II/genética
10.
Plant J ; 94(4): 626-637, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29513388

RESUMO

Plant defense against herbivores is modulated by herbivore-associated molecular patterns (HAMPs) from oral secretions (OS) and/or saliva of insects. Furthermore, feeding wounds initiate plant self-damage responses modulated by danger-associated molecular patterns (DAMPs) such as immune defense-promoting plant elicitor peptides (Peps). While temporal and spatial co-existence of both patterns during herbivory implies a possibility of their close interaction, the molecular mechanisms remain undetermined. Here we report that exogenous application of rice (Oryza sativa) peptides (OsPeps) can elicit multiple defense responses in rice cell cultures. Specific activation of OsPROPEP3 gene transcripts in rice leaves by wounding and OS treatments further suggests a possible involvement of the OsPep3 peptide in rice-herbivore interactions. Correspondingly, we found that simultaneous application of OsPep3 and Mythimna loreyi OS significantly amplifies an array of defense responses in rice cells, including mitogen-activated protein kinase activation, and generation of defense-related hormones and metabolites. The induction of OsPROPEP3/4 by OsPep3 points to a positive auto-feedback loop in OsPep signaling which may contribute to additional enhancement of defense signal(s). Finally, the overexpression of the OsPep receptor OsPEPR1 increases the sensitivity of rice plants not only to the cognate OsPeps but also to OS signals. Our findings collectively suggest that HAMP-DAMP signal integration provides a critical step in the amplification of defense signaling in plants.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mariposas/fisiologia , Oryza/genética , Peptídeos/metabolismo , Imunidade Vegetal , Transdução de Sinais , Animais , Retroalimentação Fisiológica , Herbivoria , Proteínas Quinases Ativadas por Mitógeno/genética , Oryza/imunologia , Oryza/fisiologia , Peptídeos/genética , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
11.
Genome Announc ; 5(41)2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-29025932

RESUMO

We report here the complete chloroplast genome sequences of seven strains of the bloom-forming raphidophyte Heterosigma akashiwo These ~160-kb sequences contain 124 protein-, 6 rRNA-, and 34 tRNA-coding sequences. Notable sequence variations were observed among these seven sequenced and two previously characterized strains.

12.
Virology ; 512: 74-82, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28941403

RESUMO

The genome of red clover necrotic mosaic virus is divided into two positive-stranded RNA molecules of RNA1 and RNA2, which have no 5' cap structure and no 3' poly(A) tail. Previously, we showed that any mutations in the cis-acting RNA replication elements of RNA2 abolished its cap-independent translational activity, suggesting a strong link between RNA replication and translation. Here, we investigated the functions of the 5' untranslated region (UTR) of RNA2 and revealed that the basal stem-structure (5'BS) predicted in the 5' UTR is essential for robust RNA replication. Interestingly, RNA2 mutants with substitution or deletion in the right side of the 5'BS showed strong translational activity, despite their impaired replication competency. Furthermore, nucleotide sequences other than the 5'BS of the 5' UTR were essential to facilitate the replication-associated translation. Overall, these cis-acting RNA elements seem to coordinately regulate the balance between RNA replication and replication-associated translation.


Assuntos
Regulação Viral da Expressão Gênica/fisiologia , Tombusviridae/genética , Tombusviridae/fisiologia , Replicação Viral/fisiologia , Biossíntese de Proteínas , Protoplastos , RNA Viral/genética , Nicotiana , Regiões não Traduzidas/genética , Regiões não Traduzidas/fisiologia , Proteínas Virais
13.
Virology ; 509: 152-158, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28646650

RESUMO

The bipartite genomic RNAs of red clover necrotic mosaic virus (RCNMV) lack a 5' cap and a 3' poly(A) tail. RNA1 encodes viral replication proteins, and RNA2 encodes a movement protein (MP). These proteins are translated in a cap-independent manner. We previously identified two cis-acting RNA elements that cooperatively recruit eukaryotic translation initiation factor (eIF) complex eIF4F or eIFiso4F to RNA1. Such cis-acting RNA elements and host factors have not been identified in RNA2. Here we found that translation of RNA1 was significantly compromised in Arabidopsis thaliana carrying eif4f mutation. RNA1 replicated efficiently in eifiso4f1 mutants, suggesting vigorous translation of the replication proteins from RNA1 in the plants. In contrast, MP accumulation was decreased in eifiso4f1 mutants but not in eif4f mutants. Collectively, these results suggest that RCNMV uses different eIF complexes for translation of its bipartite genomic RNAs, which may contribute to fine-tuning viral gene expression during infection.


Assuntos
Fatores de Iniciação de Peptídeos/metabolismo , Biossíntese de Proteínas , RNA Viral/metabolismo , Tombusviridae/genética , Tombusviridae/fisiologia , Replicação Viral , Arabidopsis
14.
Plant Signal Behav ; 12(6): e1338223, 2017 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-28594275

RESUMO

Reactive oxygen species (ROS), including superoxide anion (O2-), hydrogen peroxide (H2O2), and hydroxyl radical, act as signaling molecules to transduce biotic and abiotic stimuli into stress adaptations in plants. A respiratory burst oxidase homolog B of Nicotiana benthamiana (NbRBOHB) is responsible for O2- production to inhibit pathogen infection during plant innate immunity. RBOH-derived O2- can be immediately converted into H2O2 by the action of superoxide dismutase. Interestingly, we recently showed that red clover necrotic mosaic virus (RCNMV), a plant positive-strand RNA [(+)RNA] virus, hijacks the host's ROS-generating machinery during infection. An RCNMV replication protein associates with NbRBOHB and triggers intracellular ROS bursts. These bursts are required for robust viral RNA replication. However, what types of ROS are required for viral replication is currently unknown. Here, we found that RCNMV replication was sensitive to an O2- scavenger but insensitive to an H2O2 scavenger. Interestingly, replication of another plant (+)RNA virus, brome mosaic virus, was sensitive to both types of scavengers. These results indicate a virus-specific pattern requirement of O2- and H2O2 for (+)RNA virus replication and suggest a conserved nature of the roles of ROS in (+)RNA virus replication.


Assuntos
Peróxido de Hidrogênio/metabolismo , Nicotiana/virologia , Vírus de Plantas/fisiologia , Vírus de RNA/fisiologia , Superóxidos/metabolismo , Replicação Viral/fisiologia , Sequestradores de Radicais Livres/farmacologia , Vírus de Plantas/efeitos dos fármacos , Vírus de RNA/efeitos dos fármacos , Nicotiana/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
15.
Proc Natl Acad Sci U S A ; 114(7): E1282-E1290, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28154139

RESUMO

As sessile organisms, plants have to accommodate to rapid changes in their surrounding environment. Reactive oxygen species (ROS) act as signaling molecules to transduce biotic and abiotic stimuli into plant stress adaptations. It is established that a respiratory burst oxidase homolog B of Nicotiana benthamiana (NbRBOHB) produces ROS in response to microbe-associated molecular patterns to inhibit pathogen infection. Plant viruses are also known as causative agents of ROS induction in infected plants; however, the function of ROS in plant-virus interactions remains obscure. Here, we show that the replication of red clover necrotic mosaic virus (RCNMV), a plant positive-strand RNA [(+)RNA] virus, requires NbRBOHB-mediated ROS production. The RCNMV replication protein p27 plays a pivotal role in this process, redirecting the subcellular localization of NbRBOHB and a subgroup II calcium-dependent protein kinase of N. benthamiana (NbCDPKiso2) from the plasma membrane to the p27-containing intracellular aggregate structures. p27 also induces an intracellular ROS burst in an RBOH-dependent manner. NbCDPKiso2 was shown to be an activator of the p27-triggered ROS accumulations and to be required for RCNMV replication. Importantly, this RBOH-derived ROS is essential for robust viral RNA replication. The need for RBOH-derived ROS was demonstrated for the replication of another (+)RNA virus, brome mosaic virus, suggesting that this characteristic is true for plant (+)RNA viruses. Collectively, our findings revealed a hitherto unknown viral strategy whereby the host ROS-generating machinery is diverted for robust viral RNA replication.


Assuntos
Genoma Viral/genética , Vírus de Plantas/genética , Vírus de RNA/genética , Espécies Reativas de Oxigênio/metabolismo , Replicação Viral/genética , Interações Hospedeiro-Patógeno , NADPH Oxidases/metabolismo , Proteínas de Plantas/metabolismo , Vírus de Plantas/fisiologia , Proteínas Quinases/metabolismo , Vírus de RNA/fisiologia , RNA Viral/genética , Nicotiana/metabolismo , Nicotiana/virologia , Tombusviridae/genética , Tombusviridae/fisiologia
16.
Curr Opin Virol ; 17: 11-18, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26651023

RESUMO

Viral pathogenesis comes from complex interactions between viruses and hosts. All the processes of viral infection, including translation of viral factors and replication of viral genomes, define viral pathogenesis; therefore, molecular insights into the mechanisms underlying viral replication strategies unambiguously pave the way for our comprehensive understanding of viral pathogenesis and disease outcome, as well as for developing new antiviral strategies against plant virus disease. Recent studies of plant positive-strand RNA [(+)RNA] viruses have advanced our understanding of co-opted host factors and their roles in viral translation and replication. It is becoming clear that plant (+)RNA viruses harness host factors involved in membrane trafficking and lipid metabolism to establish the viral replication complex (VRC). In this review, we aim to discuss the contribution of co-opted host factors in translation and genome replication of plant (+)RNA viruses mainly focusing on those involved in the biogenesis of the VRC, which may act as a central hub in almost all the processes of viral infection as well as viral pathogenesis.


Assuntos
Interações Hospedeiro-Patógeno , Vírus de Plantas/genética , Vírus de Plantas/patogenicidade , Vírus de RNA/genética , Vírus de RNA/patogenicidade , Replicação Viral , Genoma Viral , Interações Hospedeiro-Patógeno/genética , Metabolismo dos Lipídeos , Vírus de Plantas/fisiologia , Plantas/metabolismo , Plantas/virologia , Provírus/genética , Provírus/fisiologia , Vírus de RNA/fisiologia , RNA de Plantas/genética , Vírion/genética , Replicação Viral/genética
17.
PLoS Pathog ; 11(5): e1004909, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26020241

RESUMO

Eukaryotic positive-strand RNA [(+)RNA] viruses are intracellular obligate parasites replicate using the membrane-bound replicase complexes that contain multiple viral and host components. To replicate, (+)RNA viruses exploit host resources and modify host metabolism and membrane organization. Phospholipase D (PLD) is a phosphatidylcholine- and phosphatidylethanolamine-hydrolyzing enzyme that catalyzes the production of phosphatidic acid (PA), a lipid second messenger that modulates diverse intracellular signaling in various organisms. PA is normally present in small amounts (less than 1% of total phospholipids), but rapidly and transiently accumulates in lipid bilayers in response to different environmental cues such as biotic and abiotic stresses in plants. However, the precise functions of PLD and PA remain unknown. Here, we report the roles of PLD and PA in genomic RNA replication of a plant (+)RNA virus, Red clover necrotic mosaic virus (RCNMV). We found that RCNMV RNA replication complexes formed in Nicotiana benthamiana contained PLDα and PLDß. Gene-silencing and pharmacological inhibition approaches showed that PLDs and PLDs-derived PA are required for viral RNA replication. Consistent with this, exogenous application of PA enhanced viral RNA replication in plant cells and plant-derived cell-free extracts. We also found that a viral auxiliary replication protein bound to PA in vitro, and that the amount of PA increased in RCNMV-infected plant leaves. Together, our findings suggest that RCNMV hijacks host PA-producing enzymes to replicate.


Assuntos
Nicotiana/virologia , Ácidos Fosfatídicos/metabolismo , Fosfolipase D/metabolismo , Folhas de Planta/virologia , RNA de Plantas/genética , Tombusviridae/fisiologia , Replicação Viral , Western Blotting , Inativação Gênica , Imunoprecipitação , Fosfolipase D/antagonistas & inibidores , Fosfolipase D/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
PLoS Pathog ; 10(11): e1004505, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25411849

RESUMO

The formation of virus movement protein (MP)-containing punctate structures on the cortical endoplasmic reticulum is required for efficient intercellular movement of Red clover necrotic mosaic virus (RCNMV), a bipartite positive-strand RNA plant virus. We found that these cortical punctate structures constitute a viral replication complex (VRC) in addition to the previously reported aggregate structures that formed adjacent to the nucleus. We identified host proteins that interacted with RCNMV MP in virus-infected Nicotiana benthamiana leaves using a tandem affinity purification method followed by mass spectrometry. One of these host proteins was glyceraldehyde 3-phosphate dehydrogenase-A (NbGAPDH-A), which is a component of the Calvin-Benson cycle in chloroplasts. Virus-induced gene silencing of NbGAPDH-A reduced RCNMV multiplication in the inoculated leaves, but not in the single cells, thereby suggesting that GAPDH-A plays a positive role in cell-to-cell movement of RCNMV. The fusion protein of NbGAPDH-A and green fluorescent protein localized exclusively to the chloroplasts. In the presence of RCNMV RNA1, however, the protein localized to the cortical VRC as well as the chloroplasts. Bimolecular fluorescence complementation assay and GST pulldown assay confirmed in vivo and in vitro interactions, respectively, between the MP and NbGAPDH-A. Furthermore, gene silencing of NbGAPDH-A inhibited MP localization to the cortical VRC. We discuss the possible roles of NbGAPDH-A in the RCNMV movement process.


Assuntos
Cloroplastos , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora) , Nicotiana , Proteínas de Plantas , Tombusviridae/fisiologia , Replicação Viral/fisiologia , Cloroplastos/enzimologia , Cloroplastos/genética , Cloroplastos/virologia , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/biossíntese , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , RNA Viral/genética , RNA Viral/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/virologia
19.
Front Plant Sci ; 5: 321, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25071804

RESUMO

Many plant viruses have positive-strand RNA [(+)RNA] as their genome. Therefore, it is not surprising that RNA-binding proteins (RBPs) play important roles during (+)RNA virus infection in host plants. Increasing evidence demonstrates that viral and host RBPs play critical roles in multiple steps of the viral life cycle, including translation and replication of viral genomic RNAs, and their intra- and intercellular movement. Although studies focusing on the RNA-binding activities of viral and host proteins, and their associations with membrane targeting, and intercellular movement of viral genomes have been limited to a few viruses, these studies have provided important insights into the molecular mechanisms underlying the replication and movement of viral genomic RNAs. In this review, we briefly overview the currently defined roles of viral and host RBPs whose RNA-binding activity have been confirmed experimentally in association with their membrane targeting, and intercellular movement of plant RNA virus genomes.

20.
Plant Signal Behav ; 9(3): e28644, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24714629

RESUMO

Although positive-strand RNA [(+)RNA] viruses have a limited coding capacity, they can replicate efficiently in host cells because of their ability to use host-derived proteins, membranes, lipids, and metabolites, and to rewire cellular trafficking pathways. Previously, we showed that a plant RNA virus, the Red clover necrotic mosaic virus (RCNMV), hijacked Arf1 and Sar1, which are small GTPases that regulate the biogenesis of COPI and COPII vesicles, respectively, for viral RNA replication. These small GTPases are relocated from appropriate subcellular compartments to the viral RNA replication sites by p27 replication protein, which raises the possibility that RCNMV interferes with the cellular secretory pathway. Here, we examined this possibility by using green fluorescent protein-fused rice SCAMP1 and Arabidopsis LRR84A as secretory pathway marker proteins and showed that p27 inhibited the trafficking of these proteins. RCNMV-mediated inhibition of the host secretion pathway and its possible impact on plant-virus interaction are discussed.


Assuntos
RNA Viral/biossíntese , Via Secretória , Tombusviridae/fisiologia , Proteínas Virais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...